One-Pot Asymmetric Synthesis of 2- and 2,3-Disubstituted **Tetrahydrofuran Derivatives**

P. Veeraraghavan Ramachandran,* Hari N. G. Nair, and Pravin D. Gagare

Herbert C. Brown Center for Borane Research, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States

Supporting Information

ABSTRACT: A novel and convenient one-pot asymmetric synthesis of 2- and 2,3-disubstituted tetrahydrofurans has been achieved in 56-81% yields and 86-99% ee from aliphatic and aromatic aldehydes via an allyl/crotyl/alkoxyallylborationhydroboration-iodination-cyclization reaction sequence.

Pinane-based asymmetric allylboration and related reactions¹ are significant C-C bond forming reactions that are used for the stereoselective syntheses of simple and complex molecules.² Tandem reactions involving allyl-derived boranes provide a one-pot procedure for the synthesis of either intermediates or end-products. For example, Brown and coworkers reported a tandem allylboration-protection-hydroboration-oxidation-deprotection-cyclization protocol for the synthesis of chiral γ -lactones.³ Taking advantage of the uniqueness of fluorinated alcohols, this protocol was applied for the preparation of fluorinated γ -lactones, without the need for the protection-deprotection sequence.²

We recently reported the allyboration of imines, followed by hydroboration-oxidation in the same pot, for the preparation of γ -aminobutyric acid derivatives.⁵ We also recently described a one-pot synthesis of tetrahydropyrans via an allyl/ crotylboration-Prins cyclization.⁶ In continuation of our projects on tandem reactions, a simple one-pot synthesis of tetrahydrofurans (THF) involving an intramolecular Mitsunobu reaction of the 1,4-diols obtained via allylborationoxidation was envisaged (Scheme 1). Substituted THF derivatives are key components of a wide range of biologically active natural products, such as lignans⁷ and annonceous acetogenins.⁸ Because of this importance, the THF moiety continues to attract the attention of organic chemists. Various methodologies have been described for the synthesis of

Scheme 1. Retrosynthesis of THF Derivatives via Cyclodehydration

substituted THF derivatives.⁹ Reported herein is a novel, one-pot asymmetric synthesis of chiral THF derivatives in high diastereo- and enantiomeric excesses from aldehydes via a sequential allylboration-hydroboration-iodination-cyclization reaction.

Because of the ease of analysis of the products, we began the project with the allylboration of 1-naphthaldehyde (2a) with (-)-B-allyldiisopinocampheylborane [(-)-Ipc₂BAll, 1a] in Et₂O at -100 °C.^{10,11} Analysis of the homoallylic alcohol revealed an ee of 98% (as determined by the ¹H NMR of its MTPA ester). The hydroboration of the borinate intermediate 3a was carried out in the same pot with BH3-SMe2 and was subjected to alkaline H₂O₂ oxidation.¹² ¹H NMR analysis of the crude reaction mixture revealed the formation of a 83:17 mixture of the 1,4- (5a) and 1,3-diols (5'a) (Scheme 2). HPLC analysis of 5a on a Chiralcel OD-H column demonstrated that there was a complete transfer of chirality from 1a to 5a.

Scheme 2. One-Pot Asymmetric Allylboration-Hydroboration-Oxidation

Screening other hydroborating agents, such as BH₃-THF, 9borabicyclo[3.3.1]nonane (9-BBN), Br₂BH-SMe₂, and dicyclohexylborane (Chx₂BH)¹³ revealed the exclusive formation of the 1,4-diol (5) with only Chx₂BH and 9-BBN (Table 1).

Received: February 27, 2012 Published: May 18, 2012

Table 1. Regioselectivity of Hydroboration of HomoallylAlcohol Borinate

				diol						
entry	RCHO	R'2BH	R′2BH equiv	5	yield, % ^a	5:5' ^b				
1	2a	BH ₃ -SMe ₂	1.2	5a	66	87:13				
2	2a	BH_3 -THF	1.2	5a	71	91:9				
3	2a	Br ₂ BH-SMe ₂	1.2	5a	76	93:7				
4	2a	9-BBN	1.2	5a	68	>98:<2				
5	2a	Chx ₂ BH	1.2	5a	77	>98:<2				
6	2a	Chx ₂ BH	1.5	5a	81	>98:<2				
7	2a	Chx ₂ BH	2.0	5a	81	>98:<2				
8	2b	BH ₃ -SMe ₂	1.2	5b	65	83:17				
9	2b	BH3-THF	1.2	5b	66	88:12				
10	2b	9-BBN	1.2	5b	60	96:4				
11	2b	Chx ₂ BH	1.2	5b	60	>98:<2				
12	2b	Chx ₂ BH	1.5	5b	71	>98:<2				
13	2b	Chx ₂ BH	2.0	5b	71	>98:<2				
14	2c	Chx ₂ BH	1.5	5c	72	>98:<2				
15	2d	Chx ₂ BH	1.5	5d	65	>98:<2				
16	2e	Chx ₂ BH	1.5	5e	67	>98:<2				
17	2f	Chx ₂ BH	1.5	5f	65	>98:<2				
^a Isolated yield. ^b The ratio of 5:5' was determined by ¹ H NMR of the										
crude reaction mixture										

Increasing the equivalents of Chx_2BH from 1.2 to 1.5 improved the yield of 5 to 81%. Further increasing the amounts of the hydroborating agent did not enhance the yields. We also performed the allylboration—hydroboration—oxidation sequence with *p*-trifluoromethylbenzaldehyde (2b); in this case, Chx_2BH gave the best regioselectivity. We therefore chose Chx_2BH for further reactions.

The stage was now set to examine the intramolecular Mitsunobu reaction.¹⁴ Evans and co-workers had reported that the cyclodehydration of (S)-phenylethane-1,2-diol with various phosphorus reagents resulted in significant racemization.¹⁵ The application of this method for the synthesis of the THF derivative from 1,4-diol **5a** gave only 33% yield of the desired product, (S)-2-(naphthalen-1-yl)tetrahydrofuran (**6a**). Unfortunately, the enantiomeric excess dropped from 98 to 80% for **6a**. Low yields and a significant drop in ee were observed with the chiral 1,4-diols derived from **2b** and **2d** as well.

Weissman et al. has described the use of Chx₃P-DIAD as an effective reagent system to achieve high stereoretention for the Mitsunobu cyclodehydration during the preparation of chiral styrene oxide derivatives.¹⁶ The high cost of Chx₃P dissuaded us from using the Weissman protocol, and an intramolecular ether synthesis via the iodination of intermediate 4 appeared attractive (Scheme 3).

Scheme 3. Revised Retrosynthesis of THF Derivatives: Iodination Approach

The allylboration of 1-naphthaldehyde was carried out in Et₂O at -100 °C for 5 min; the reaction mixture was then transferred via cannula to a flask containing Chx₂BH in Et₂O at rt. The solid Chx₂BH was visibly consumed within 5 min, while the ¹¹B NMR spectrum of the intermediate borinate 4a revealed two broad peaks at δ 52 and 84 ppm (corresponding to a borinate and a trialkylborane, respectively). Iodination of a 1°-carbon attached to boron is reported to be much faster than that of a 2°- or a 3°-carbon.¹⁷ Accordingly, the addition of 1 equiv of methanolic NaOMe to 4a revealed the disappearence of the trialkylborane (¹¹B NMR peak at δ 84 ppm) and the formation of two different tetracoordinated boron species (¹¹B NMR peaks at δ 8 and 1 ppm).¹⁸ The peak due to the intermediate borinate at δ 52 ppm was still present, though there was a decrease in its size.¹⁹ Iodine was added at this stage and stirred for 2 h, whereafter the ¹¹B NMR spectrum revealed the regeneration of the peak at δ 52 ppm and the disappearance of the peaks due to the "ate" complexes. This could be rationalized by the formation of Chx2BOMe upon iodination. Workup provided only 10% yield of the corresponding THF derivative 6a along with the corresponding iodinated product, 4-iodo-1-(naphthalen-1-yl)butan-1-ol, in 61% yield. The above sequence of reactions provided 6a in 81% yield when 2 equiv of methanolic NaOMe were used. Alternately, a high yield of 6a can also be achieved by the treatment of 4a with 1 equiv of methanolic NaOMe and I_2 , followed by the addition of 1 equiv of aq NaOH (Scheme 4).

Scheme 4. One-Pot Allylboration-Hydroboration-Iodination-Cyclization

Thus under optimized conditions, a 1 M solution of (-)-Ballyldiisopinocampheylborane in pentane (3.1 mL) was added at -100 °C to 2a (3 mmol) dissolved in dry ether (6 mL), and the mixture was stirred for 5 min. The reaction mixture was added to Chx₂BH (0.8 g, 4.5 mmol) and allowed to warm to room temperature, and then it was stirred for 5 min. Iodine (1.52 g, 6 mmol) was added to the reaction mixture, followed by a 1 M solution of sodium methoxide in methanol (6 mL, 6 mmol). After stirring for 2 h, the crude product was extracted with ether, dried over anhydrous Na2SO4, concentrated and purified by flash column chromatography to obtain $\mathbf{6a}$ in $\mathbf{81\%}$ yield and 98% ee. Once the conditions for the one-pot allylboration-hydroboration-iodination-cyclization were optimized, the generality of the reaction was demonstrated with a series of aldehydes possessing varying steric and electronic properties (Table 2). The aldehyde with an electron-withdrawing (p-CF₃) group 2b provided product 6b in 70% yield and 90% ee, whereas the aldehyde with an electron-donating (p-MeO) group 2d provided the product 6d in 60% yield and 95% ee. Aliphatic aldehydes 2e and 2f formed 6e and 6f in 67 and 65% yields, respectively, and 96 and 92% ee, respectively. The ee-values of the THF derivatives were determined by HPLC analysis on a Chiralcel OD-H column and/or by GC analysis on a CP-Chirasil-Dex CB column.

This methodology was then extended to include crotylboration- and methoxyallylboration-hydroboration-iodination-

Table 2. One-Pot Allylboration-Hydroboration-Iodination-Cyclization of Aldehydes

	,		•			
Entry	RCHO	R'2BH	THF derivative	Yield $\%^a$	ee %	Config.
1	2a	1a	6a	81	98^b	S
2	2b	1a	F ₃ C 6b	70	90 ^c	S
3	2c	1a	6c	74	96 ^c	S
4	2d	1a	Meo 6d	60	95 ^c	S
5	2e	1a	6e	67	96 ^c	R
6	2f	1a	n-C ₇ H ₁₅ 6f	65	92 ^d	R
7	2a	<i>Z</i> -1b	Cis-7a	63	86 ^c	<i>S, R</i>
8	2a	<i>E</i> -1b	trans-7a	66	90 ^c	<i>S</i> , <i>S</i>
9	2a	1c	Sa Sa	56	99 ^c	<i>S, R</i>

Note

^{*a*}Isolated overall yield for 4 steps. ^{*b*}Determined by HPLC analysis on a Chiralcel OD-H column. ^{*c*}Determined by GC analysis on a CP-Chirasil-Dex CB column. ^{*d*}On the basis of the ee of the homoallylic alcohol.

cyclization to prepare the corresponding 2,3-disubstituted THF derivative from **2a**. *E*- and *Z*-crotylboration of 1-naphthaldehyde with (*E*)-*B*-crotyldiisopinocampheylborane (*E*-**1b**) and (*Z*)-crotyldiisopinocampheylborane (*Z*-**1b**), followed by hydroboration—iodination—cylization provided the corresponding diastereomerically pure 3-methyl-2-naphthyl-tetrahydrofurans, *trans*-**7a** and *cis*-**7a**, in 90 and 86% ee, respectively. Alkoxyallylboration of 1-naphthaldehyde using *B*-methoxyallyldiisopinocampheyl-borane (**1c**), followed by the hydroboration—iodination—cyclization reaction sequence afforded essentially enantiomerically pure 2-methoxy-3-naphthyltetrahydrofuran (**8a**) in 56% yield, >99% de and 99% ee (Table 2).

In conclusion, an efficient and convenient asymmetric synthesis of 2-substituted and 2,3-disubstituted tetrahydrofurans has been achieved via a novel one-pot allylboration hydroboration—iodination—cyclization protocol.

EXPERIMENTAL SECTION

General Information. All reactions were performed under inert atmosphere. All solvents for routine isolation of products and chromatography were reagent grade. Reaction flasks were dried in an oven at 110 $^{\circ}$ C for 12 h. Air- and moisture-sensitive reactions were performed under nitrogen atmosphere. Flash chromatography was performed using silica gel (100–200 mesh) with indicated solvents. All

reactions were monitored by thin-layer chromatography carried out on 0.25 mm silica plates (60F-254) using UV light as visualizing agent. In general, reactions were carried out in dry solvents under nitrogen atmosphere, unless noted otherwise. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded either on a 400 MHz or on a 300 MHz NMR spectrometer. Chemical shifts, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant in hertz (Hz), and number of protons. Flash chromatography was performed using silica gel 40–63 μ m, 60 Å and hexane–ethyl acetate mixture as eluent.

Procedure of One-Pot Allylboration–Hydroboration–Oxidation Reaction. Synthesis of 1,4-Diols. A pentane solution of (–)-B-allyldiisopinocampheylborane (1 M, 3.1 mL, 3 mmol) was added at -100 °C to aldehyde (3 mmol) dissolved in dry ether (6 mL) and maintained at -100 °C. After stirring for 5 min, this reaction mixture was added to Chx₂BH (0.8 g, 4.5 mmol) in ether (3 mL), allowed to warm to room temperature, and stirred for 5 min. Reaction was followed by TLC. After completion, the reaction mixture was cooled to 0 °C and quenched by the addition of 3 N aq NaOH solution (2 mL), followed by slow addition of 30% hydrogen peroxide (2 mL), and stirred for 4 h at room temperature. Organic layer was separated, and aqueous layer was extracted with ether (3 × 15 mL). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography.

General Procedure for the Synthesis of THF-Derivative-Cyclodehydration Method. Triisopropylphosphine (0.3 g, 1.87 mmol) was dissolved in anhydrous THF (3 mL) at rt, followed by

The Journal of Organic Chemistry

cooling to 5 °C and the addition of diisopropyl azodicarboxylate (0.35 mL, 1.8 mmol). The reaction was warmed to 15 °C. After 10 min, the diol (1.20 mmol) dissolved in THF (3 mL) was added dropwise, followed by warming to 25 °C, and then it was stirred for 6 h. Reaction was followed by TLC. The reaction mixture was quenched by addition of saturated NH₄Cl solution, extracted with ether, dried over Na₂SO₄, and purified using column chromatography.

General Procedure for the Preparation of THF-Derivative: One-Pot Allylboration–Hydroboration–Iodination–Cyclization. Aldehyde (3 mmol) was dissolved in dry ether (6 mL). A 1 M solution of (–)-B-allyldiisopinocampheylborane (3.1 mL) in pentane was added at –100 °C and stirred for 5 min. After stirring for 5 min, this reaction mixture was added to Chx_2BH (0.8 g, 4.5 mmol) in ether (3 mL), allowed to warm to room temperature, and stirred for 5 min. Iodine (1.52 g, 6 mmol) was added to the reaction mixture, followed by 1 M solution of sodium methoxide in methanol (6 mL, 6 mmol), and the mixture was stirred for 2 h. Reaction was followed by TLC. The crude product was extracted with ether, dried over anhydrous Na_2SO_4 , concentrated, and purified by flash column chromatography.

(S)-2-(Naphthalen-1-yl)tetrahydrofuran (6a). 6a was obtained as pale-yellow liquid in 81% yield (0.481 mg).

Spectral data: ¹H NMR (CDCl₃, 300 MHz) δ 7.99–7.96 (m, 1H), 7.88–7.85 (m, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 7.2 Hz, 1H), 7.53–7.43 (m, 3H), 5.65 (t, J = 6.9 Hz, 1H), 4.28–4.20 (m, 1H), 4.07–4.00 (m, 1H), 2.62–2.51 (m, 1H), 2.12–1.86 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 139.3, 130.4, 128.8, 127.4, 125.8, 125.5, 125.4, 123.4, 121.8, 77.9, 68.8, 33.8, 26.0; HRMS (ESI) C₁₄H₁₄O calc. 198.1045, found 198.1069.

(S)-2-(4-(Trifluoromethyl)phenyl)tetrahydrofuran (6b). 6b was obtained as pale-yellow liquid in 70% yield (0.454 mg).

Spectral data: ¹H NMR (CDCl₃, 300 MHz) δ 7.58 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.1 Hz, 2H), 4.94 (t, J = 7.2 Hz, 1H), 4.14–3.92 (m, 1H), 3.99–3.92 (m, 1H), 2.42–2.32 (m, 1H), 2.05–1.96 (m, 2H), 1.82–1.70 (m, 1H). ¹⁹F NMR (CDCl₃, 282 MHz) δ –62.33 (s, 3F); ¹³C NMR (CDCl₃, 75 MHz) δ 147.8, 125.8, 125.3, 125.2, 80.0, 68.8, 34.7, 25.9; HRMS (ESI) C₁₁H₁₁F₃O calc. 216.0762, found 216.0738.

(S)-2-Phenyltetrahydrofuran (6c). 6c was obtained as colorless liquid in 74% yield (0.328 mg).

Spectral data: ¹H NMR (CDCl₃, 300 MHz) δ 7.2–7.43 (m, 5H), 4.82 (t, *J* = 7.8 Hz, 1H), 4.08–4.15 (m, 1H), 3.96–3.85 (m, 1H), 2.25–2.36 (m, 1H), 2.06–1.96 (m, 2H), 1.88–1.72 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 143.5, 128.4, 127.2, 125.7, 80.8, 68.8, 34.7, 26.1; HRMS (ESI) C₁₀H₁₂O calc. 148.0888, found 148.0899.

(5)-2-(4-Methoxyphenyl)tetrahydrofuran (6d). 6d was obtained as gummy liquid in 60% yield (0.320 mg).

Spectral data: ¹H NMR (CDCl₃, 300 MHz) δ 7.28–7.25 (m, 2H), 6.90–6.86 (m, 2H), 4.83 (t, *J* = 9.0 Hz, 1H), 4.12–4.05 (m, 1H), 3.95–3.87 (m, 1H), 3.80 (s, 3H), 2.33–2.23 (m, 1H), 2.06–1.96 (m, 2H), 1.88–1.72 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 158.8, 135.4, 127.0, 113.7, 80.5, 68.5, 55.3, 34.5, 26.1; HRMS (ESI) C₁₁H₁₄O₂ calc. 178.0994, found 178.0982.

(*R*)-2-Phenethyltetrahydrofuran (6e). 6e was obtained as clear liquid in 67% yield (353 mg).

Spectral data: ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.05 (m, 5H), 3.94–3.54 (m, 3H), 2.82–2.70 (m, 1H), 2.69–2.61 (m, 1H), 2.04–1.65 (m, 5H), 1.50–1.40 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.9, 128.2, 128.1, 125.5, 78.3, 67.4, 37.2, 32.5, 31.1, 25.5; HRMS (ESI) C₁₂H₁₆O calc. 176.1201 found 176.1235.

(*R*)-2-Heptyltetrahydrofuran (6f). 6f was obtained as light yellow liquid in 65% yield (0.331 mg).

Spectral data: ¹H NMR (400 MHz, CDCl₃) δ 3.85–3.54 (m, 3H), 1.95–1.66 (m, 3H), 1.50 (m, 1H), 1.43–1.29 (m, 3H), 1.22 (m, 9H), 0.80 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 79.1, 67.2, 35.5, 31.6, 31.1, 29.5, 29.0, 26.1, 25.4, 22.4, 13.8; HRMS (ESI) C₁₁H₂₂O calc. 170.1671, found 170.1641.

General Procedure for the Preparation of THF-Derivative: One-Pot Crotylboration-Hydroboration-Iodination-Cyclization. A 1 M solution of 'BuOK in THF (2.5 mL, 2.5 mmol) is added to THF (9 mL) and cooled to -78 °C. 2-Butene (5 mmol) was added via cannula, and after 5 min, a 2.5 M solution of n-BuLi in hexanes (76.4 mL 2.5 mmol) was added dropwise. The reaction mixure was warmed to $-55\,\,^{\circ}\text{C},$ stirred there for 45 min, and again cooled to -78 °C. A -78 °C cooled solution of (-)-Ipc2BOMe (3 mmol) in THF was added dropwise via cannula, and the reaction mixture was stirred for 1 h. BF₃·Et₂O (3.6 mmol) was added dropwise, followed by a dropwise addition of the -78 °C cooled solution of aldehyde (2 mmol) in THF (1 mL) via cannula. The reaction mixture was stirred at -78 °C for 3 h. Reaction mixture was warmed to 0 °C, and dicyclohexylborane (7.5 mmol) was added. Reaction mixture was warmed to room temperature and stirred for 5 min. Iodine (1.52 g, 6 mmol) was added to the reaction mixture, followed by a 1 M solution of sodium methoxide in methanol (6 mL, 6 mmol), and the mixture was stirred for 2 h. Reaction was followed by TLC. The crude product was extracted with ether, dried over anhydrous Na2SO4, concentrated, and purified by flash column chromatography.

(25,3R)-3-Methyl-2-(naphthalen-1-yl)tetrahydrofuran (*cis*-7a). *cis*-7a was obtained as pale-brown gummy oil in 63% yield (0.267 mg).

Spectral data: ¹H NMR (300 MHz, CDCl₃) δ 7.94–7.81 (m, 2H), 7.77–7.66 (m, 2H), 7.53–7.41 (m, 3H), 5.64 (d, *J* = 6.0 Hz, 1H), 4.22 (dd, *J* = 15.3, 7.3 Hz, 1H), 3.99 (td, *J* = 8.3, 5.8 Hz, 1H), 2.94–2.75 (m, 1H), 2.48–2.22 (m, 1H), 1.85–1.73 (m, 1H), 0.45 (d, *J* = 7.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 136.2, 133.4, 130.5,128.9, 127.2, 125.7, 125.5, 125.3, 123.4, 122.9, 80.8, 66.5, 36.7, 34.6, 15.8; HRMS (ESI) C₁₅H₁₆O calc. 212.1201, found 212.1221.

(25,35)-3-Methyl-2-(naphthalen-1-yl)tetrahydrofuran (*trans*-7a). *trans*-7a was obtained as yellow gummy oil in 66% yield (0.280 mg).

Spectral data: ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 2.2 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.56–7.40 (m, 4H), 5.14 (d, J = 6.4 Hz, 1H), 4.25 (dd, J = 14.1, 8.0 Hz, 1H), 4.12 (dd, J = 14.8, 7.8 Hz, 1H), 2.41 (dq, J = 13.5, 6.8 Hz, 1H), 2.28–2.14 (m, 1H), 1.73 (dt, J = 13.0, 6.7 Hz, 1H), 1.18 (d, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 137.9, 133.8, 131.1, 128.7, 127.8, 125.7, 125.3, 123.7, 123.3, 85.2, 85.2, 67.7, 41.1, 33.9, 17.7; HRMS (ESI) C₁₅H₁₆O calc. 212.1201, found 212.1231

(2R,3R)-3-Methoxy-2-(naphthalen-1-yl)tetrahydrofuran (8a). 8a was obtained as pale-brown gummy solid in 56% yield (0.255 mg).

Spectral data: ¹H NMR (CDCl₃, 300 MHz) δ 7.98–7.97 (m, 1H), 7.90–7.86 (m, 1H), 7.82–7.78 (m, 1H), 7.54–7.47 (m, 2H), 7.53–7.43 (m, 3H), 5.54 (d, *J* = 3.6 Hz, 1H), 4.35–4.27 (m, 2H), 4.05 (dt, *J* = 4.8 and 8.7 Hz, 1H), 2.77 (s, 3H), 2.42–2.20 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 139.3, 130.4, 128.8, 127.4, 125.8, 125.5, 125.4, 123.4, 121.8, 77.9, 68.8, 33.8, 26.0; HRMS (ESI) C₁₅H₁₆O₂ calc. 228.1150, found 228.1170

ASSOCIATED CONTENT

S Supporting Information

Copies of the NMR spectra of the products. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: chandran@purdue.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Herbert C. Brown Center for Borane Research for financial assistance of this project.

REFERENCES

- (1) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092.
- (2) Ramachandran, P. V. Aldrichimica Acta 2002, 35, 23.
- (3) Brown, H. C.; Kulkarni, S. V.; Racherla, U. S. J. Org. Chem. 1994, 59, 365.

The Journal of Organic Chemistry

- (4) Ramachandran, P. V.; Padiya, K. J.; Rauniyar, V.; Reddy, M. V. R.; Brown, H. C. *Tetrahedron Lett.* **2004**, *45*, 1015.
- (5) Ramachandran, P. V.; Biswas, D. Org. Lett. 2007, 9, 3025.
- (6) Ramachandran, P. V.; Gagare, P. D. Tetrahedron Lett. 2011, 52, 4378.

(7) (a) Ayres, D. C.; Loike, J. D. Lignans Chemicals, Biological and Chemical Properties; Cambridge University Press: Cambridge, U.K., 1990. (b) Akiyama, K; Yamauchi, S.; Nakato, T.; Maruyama, M.; Sugahara, T.; Kishida, T. Biosci., Biotechnol., Biochem. 2007, 71, 1028.
(c) Yoda, H.; Mizutani, M.; Takabe, K. Tetrahedron Lett. 1999, 40, 4701.

- (8) McLaughlin, J. L. J. Nat. Prod. 2008, 71, 1311.
- (9) For examples, see: (a) Williams, D. R.; De, R. Heterocycles 2012, 84, 385. (b) Benjamin, N. M.; Martin, S. F. Org. Lett. 2011, 13, 450. (c) Yang, G. S.; Shen, Y.; Li, K.; Sun, Y.; Hua, Y. J. Org. Chem. 2011, 76, 229. (d) Alcaide, B.; Almendros, P.; Carrascosa, R.; del Campo, T. M. Chem.—Eur. J. 2010, 16, 13243. (e) Wolfe, J. P.; Hay, M. B. Tetrahedron 2007, 63, 261. (f) Mohapatra, D. K.; Naidu, P. R.; Reddy, D. S.; Nayak, S.; Mohapatra, S. Eur. J. Org. Chem. 2010, 32, 6263.

(10) Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401.

(11) (–)-Ipc₂BAll reagent is prepared from (+)- α -pinene.

(12) Nguyen, T.; Sherman, D.; Ball, D.; Solow, M.; Singaram, B. Tetrahedron Asymmetry **1993**, 4, 189.

(13) Solorio, D. M; Jennings, M. P. J. Org. Chem. 2007, 72, 6621.

(14) Hughes, D. L. Org. React. 1992, 42, 335.

(15) Robinson, P. L.; Barry, C. N.; Bass, S. W.; Jarvis, S. E.; Evans, S. A., Jr. J. Org. Chem. **1983**, 48, 5396.

(16) Weissman, S. A.; Rossen, K.; Reider, P. J. Org. Lett. 2001, 3, 2513.

(17) Brown, H. C.; Rathke, M. W.; Rogić, M. M.; Delue, N. R. Tetrahedron 1988, 44, 2751.

(18) This could be due to the formation of intra- and intermolecular "ate" complexes.

(19) Quantification of the boron species by NMR is difficult.